
MD.Shabeena Begum, M.Kishore Kumar / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1148-1151

1148 | P a g e

FPGA BASED IMPLEMENTATION OF 32 BIT RISC

PROCESSOR

M.Kishore Kumar
Associate Professor, Department of ECE

Sri Vasavi Engg College,

Tadepalligudem.

Abstract

In this paper, a design of general purpose

processor with a 5 stage pipeline, to incorporate

programmable resources in to a processor.

RISC processors have a CPI (clock per

instruction) of one cycle. This is due to the

optimization of each instruction on the CPU

and a technique called pipelining. This

technique allows each instruction to be

processed in a set number of stages. This in

turn allows for the simultaneous execution of a

number of different instructions, each

instruction being at a different stage in

pipeline. The development approach of the

overall system design depends on the design

specification, analysis and simulation. The

RISC Processor core is high performance 32-

bit microprocessor. This processor make it

especially suited to embedded control

applications.

Keywords: Pipeline, clock per instruction,

control applications

1. INTRODUCTION

As the high capacity ,low –cost FPGA devices

train continues its revolutionary journey through

the electronics design Landscape, an ever-

increasing number of design landscape, an ever-

increasing number of designers are jumping on

board trading their traditional hardware-based

systems for the attractive ness of the FPGA‟s

„soft‟ programmability.

Creation of soft processor based systems,
destined to run within a chosen

Target FPGA device, becomes second nature –

utilizing one of the many supported flavors of

32 –bit RISC processor, wired up to access

peripheral I/O and memory over a standard bus

MD.Shabeena Begum
M.Tech Student, Department of ECE

Sri Vasavi Engg College,

Tadepalligudem.

interface.‟ Soft processors are processors that are

defined as part of the FPGA design that is

programmed into the physical FPGA device,

rather than physical, discrete devices connected

to the FPGA, or processors that are immersed as

part of the physical FPGA‟s makeup. Such

processors are typically 32-bit and have simple,

RISC architectures.

Embedded software refers to the code- the

software „smarts‟ – that gets downloaded to the

physical FPGA device and which will run on a

soft processor defined within the FPGA design.

The beauty of using „soft‟ processors in FPGA

designs is that you are not locked to a physical

device. We can change processor or modify the

code running on it simply by reprogramming the

physical FPGA device with a modified hardware

design or updated embedded code – leading to
true „ field upgradeable hard ware and software‟.

2. MICRO ARCHITECTURE

It includes the CPU core, an instruction cache

and data cache. You can select an optimum data

and instruction cache configuration among a

variety of possible configurations.

Micro architectures can be pipelined to different

categories. Thus the degree of pipelining is a

micro architectural decision.

MD.Shabeena Begum, M.Kishore Kumar / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1148-1151

1149 | P a g e

Reg1

RegAcc

MuxA MuxD

Mux

Control and decoding

S
e
lA

S
e
lB

S
e
lC

Instruction

Register

Program

Counter

A
lu

O
u

t

Reg1

RegAcc

LdIr

IL
d
P

c

Clk
Rst

Fetch

MemRd

MemWr

Addr

PcOut

OPAddr

Memory

I
n

s
tr

u
c
ti

o
n

s

C
o
m

m
a
n

d

O
p

e
r
a
n

d
s

(D
a
t
a
)

ALU

S
e
lD

Clk2
Clk1

Fetch
InClk

DataBus2 DataBus1

D
a
ta

B
u

s
2

Clk2
Fetch

MemRd Ena

In
c
P

cO
p
C

o
d
e

O
p
r
A

d
d

r

Figure 1: Block diagram of the RISC

Processor Core.

 Final clock frequency of a specific processor
pipeline on a given silicon process technology

depends heavily on how deeply the processor is

pipelined. When designing a new processor, a

key design decision is the target design

frequency of operation. The frequency target

determines how many gates of logic can be

included per pipeline stage in the design. This

helps to determine how many pipeline stages

there are in the machine.

There are trade offs when the designing for
higher clock rates. High clock rates need deeper

pipelines so the efficiency at the same clock rate

goes down. Deeper pipelines make many things

take more clock cycles, such as mispredicted

branches and cache misses, but usually more

than make up for the lower per-clock efficiency

by allowing the design to run at a much higher

clock rate. 50%

Increase in frequency might buy only a 30%

increase in net performance, nut this frequency

increase still provides a significant overall

performance increase.

High-frequency design also depends heavily on

circuit design techniques, design methodology,

design tools, Silicon process technology, power

and thermal constrains, etc. At higher

frequencies, clock skews and jitter and latch

Delay becomes a much bigger percentage of the

clock cycles, reducing the percentage of the

clock cycle usable by actual logic. The deeper

pipelines make the machine more complicated
and require it to have deeper buffering to cover

the longer pipelines.

The CPU core comprises the following blocks:

CPU register: General purpose register, program

counter

CP0 register: Registers for system control

coprocessor (cp0) functions

ALU/Shifter: Computational unit

MAC: Computational unit for multiply/add

Bus interface unit: Control bus interface between

CPU core and external circuit.

Memory management unit: Direct segment

mapping memory management unit.

3. INSTRUCTIONSET

OVERVIEW

All Processor Core instructions are 32 bits in

length. These are three instruction formats:

Immediate (I-type), Jump (j-type) and register

(R-type). Having just three instruction formats

simplifies instruction decoding.

I-type (Immediate)

31 26 25 21 20 16 15

0

J-type (Jump)

31 26 25

0

R-type (Register)

31 26 25 21 20 16 15 11 10 6 5

0

3.1. Load/Store machine with a large number of

internal registers:

OP rs rt Immediate

OP Target

OP rs rt rd sa funct

MD.Shabeena Begum, M.Kishore Kumar / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1148-1151

1150 | P a g e

RISC design philosophy typically uses a large
number (commonly 32) of registers. Most

instructions operate on these registers, with

access to memory made using a very limited set

of Load and Store instructions. This limits the

need for continuous access to slow memory for

loading and stroring data.

3.2 Separate Data Memory and Instruction

Memory access paths:

 Different stages of the pipeline perform
simultaneous accesses to memory. This Harvard

style of architecture can either be used with two

completely different memory spaces, a single

dual-port memory space with separate data and

instruction caches for the two pipeline stages.

This high-speed ALU core is kept as small as

possible to minimize the metal length and

loading. Only the essential hardware necessary

to perform the frequent ALU operations is

included in this high-speed ALU execution loop.

Functions that are not used very frequently, for
most integer programs, are not put in this key

low-latency ALU loop but are put elsewhere.

Some examples of integer execution hardware

put elsewhere are the multiplier, shifts, flag

logic, and branch processing.

The processor does ALU operations with an

effective latency of one-half of a clock cycle. It

does this operation in a sequence of three fast

clock cycles (the fast clock runs at 2x the main

clock rate) as shown in Figure 7. In the first fast
clock cycle, the low order 16-bits are computed

and are immediately available to feed the low

16-bits of a dependent operation the very next

fast clock cycle. The high-order 16 bits are

processed in the next fast cycle, using the carry

out just generated by the low 16-bit operation.

This upper 16-bit result will be available to the

next dependent operation exactly when needed.

This is called a staggered add.

4 SYNTHESIZED RESULTS

The ISA of the 32 bit RISC processor was

described using the VHDL .The tool chain

including the Active HDL simulator; it was

synthesized using Xilinx 9.2i. The total memory

usage is 81408 kB. Maximum combinational
path delay is 2.677ns. Operating clock frequency

about 300 MHZ.

Simulation Results of RISC Processor

5 CONCLUSION

32­bit RISC Processor core has been design

and implemented in hardware on Xilinx Spartan
3E FPGA. The design has been

achieved using VHDL

and simulated with Xilinx 9.2i. Spartan 2E

development board has been used for the

hardware part. Most of the goals were achieved

and simulation shows that the processor is

working perfectly, Future work will be added

by increasing the number of instructions
and make a pipelined design with less

MD.Shabeena Begum, M.Kishore Kumar / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1148-1151

1151 | P a g e

clock cycles per instruction and more
improvement can be added in the future work.

REFERENCES

[1]Imyong lee, Dongwook Lee, Kiyoung choi

“ODALRISC: A Small, Low power and

Configurable 32-bit RISC processor”

International SOC design conference 2008.

[2] R. Gonzalez, “Xtensa: a configurable and

extensible processor,” IEEE Micro, v.20 n.2,

pp.60-70, March 2000.
[3] S. Pees, A. Hoffmann, V. Zivojnovic, and H.

Meyr, “LISA – machine description language for

cycle-accurate models of programmable DSP

architectures,” in proc. Design Automation

Conference, pp.933-938, June 1999.

[4] A. Abd-alla and D. Kartlgaard, “Heuristic

Synthesis of Micro programmed Computer

Architectures,” IEEE Trans. on Computers Vol.

23, No. 8, Aug. 1974, pp. 802-807.

[5]P. Liu and F. Mowle, “Techniques of

Program Execution with a Writable Control

Memory,” IEEE Trans. on Computers, Vol. 27,
No. 9, Sept. 1978, pp. 816-827.

[6] R. Razdan and M.D. Smith, “A High-

Performance Micro architecture with Hardware-

Programmable Functional Units,”Proc. Micro-

27, IEEE Computer Society, 1994, pp. 172-180.

[7] S. Hesley et al., “A 7th-generation x86

Microprocessor,” Proc. IEEE Int‟l. Solid-State

Circuits Conf., Vol. 42, IEEE Press, 1999, pp.

182-183.

[8] V. iivojnovit, S. Pees, and H. Meyr, “LISA -

machine description language and generic
machine model for HW/SW co-design,” in

Proceedings of the IEEE Workshop on VLSI

Signal Processing, (San Francisco), Oct. 1996.

[9] R. W. Cook and M. J. Flynn, "System design

of a dynamic microprocessor," IEEE Trans.

Computer., vol. C-19, pp. 213-222, Mar. 1970.

[10] S. Santhanam et al., “A Low-Cost 300-MHz

RISC CPU with Attached Media

Processor,”Proc. IEEE Int‟l Solid-State Circuits

Conf., Vol. 41, IEEE Press, 1998, pp. 298-299.

[11] R. Brayton, R. Rudell, A. Sangiovanni-

Vincentelli, and A. Wang. “MIS:Multiple-Level
Logic Optimization System”.IEEE Transactions

on CAD, CAD-6(6):1062-1081, Nov.1987.

[12] G. Hadjiyiannis, S. Hanono, and S.

Devadas, “ISDL: An instruction set description

language for retarget ability,” in Proc. of the

ACM/IEEE Design Automation Conference

(DAC), Jun. 1997.

[13] P. Athanas and H. Silverman. “Processor
Reconfiguration Through Instruction-set

Metamorphosis”. IEEE Computer, 26(3):11-18,

Mar. 1993.

[14] A. Kalavade and E. Lee, “A hardware–

software codesign methodology for DSP

applications,” IEEE Design €4 Test of

Computers, pp. 16-28, Sept. 1993.

[15]V. Zivojnovid, S. Tjiang, and H. Meyr,

“Compiled simulation of programmable DSP

architectures,” in Proc. of IEEE Workshop on

VLSI in Signal Processing, Osaka, Japan, pp.
187-196, Oct. 1995.

[16]S. Oberman, “Floating point division and

square root algorithms and implementation in

the AMD-K7 microprocessor,” in Proc. 14th

IEEE Symp. Computer Arithmetic, Apr. 1999,

pp. 106–115.

[17] T. Rauscher and A. Agrawala.

“Dynamic Problem oriented Redefinition of

Computer Architecture via Microprogramming”.

IEEE Transactions on Computers, C-27(1 I):

1006-1014, Nov. 1978.

[18]Michael Gschwind, Valentina Salapura, and
Dietmar Maurer “FPGA prototyping of a RISC

Processor Core For Embedded Applications”

IEEE transaction on VLSI systems, vol 9, no.2,

April 2001.

